Posted on September 16, 2015 at 7:00 PM |
After selling this program for five years, suddenly two separate clients came up with scenarios that "broke" WASP within the same month. By break, I don't mean destroy the software, but rather they managed to create scenarios with infinite results on level ground, for separate projects, one in Japan, and one in Panama.
The examples were both where the designers were in high seismic areas, were on level ground, wanted to simulate "non-moving (at-rest) Ko" conditions, and they were not using particularly strong soil materials. The example from the client below is for a 4.05m high vertical wall with soils with 30 degree friction angle. Following guidelines in the US FHWA manual on earthquake design, they figured that to get "Ko-earthquake" conditions, rather than designing for 0.5 times the PGA, they would design for 1.25 times the PGA - which resulted in 0.66 g x 1.25 = 0.75g.
Results are shown below. Basically they "broke" my promise that WASP would never come up with a infinite active pressure. This is because as the PGA was increased, their calculation actually brings the "infinite slope" scenario to flat ground (Mononobe-Okabe would also result in an imaginary result). In other words, the linear failure surface associated with M-O and the WASP code which provide the maximum active pressure dropped to, and slightly below, and 0 degree angle. At first it appears the graph is not working, but on closer examination Kae is in the range of 400,000, and this occurs only at a failure inclination of 1 degree from horizontal.
Valid options are:
An alternate solution shown here is to increase the cohesion to 10 kPa (208 psf) with the friction angle of 30 degrees - might be appropriate for a silty sand. While for a simple problem such as the client was designing, you probably don't have enough testing, consider this implies that the soil is capable of standing in a vertical cut 1.7 m (5 feet high), which is roughly the maximum vertical cut for trenching allowed by US OSHA. If you have already seen construction on your site, you may have observed trench excavations for utilities this deep constructed vertical...
The next blog post shows how I can model the seismic active pressure using a slope stability program for the example above.
Categories: Wedge Analysis Discussion
The words you entered did not match the given text. Please try again.
Oops!
Oops, you forgot something.